Bi-Directional Coiled Tubing Energizer
Contents

Logan Bi-Directional Coiled Tubing Energizer
Overview...2
Rig Up...2
Jarring..2
Rig Down..2
Dressing Area Maintenance2
Disassembly ...3
Inspection of Parts...3
Inspection of Critical Parts...4
Assembly ...4
Filling the Energizer With Oil5
Testing the Energizer..5
Figure 1: Energizer Tong and Vise Locations...............6
Figure 2: Energizer Components.................................7
Figure 3: Energizer Seal Components..........................8
Figure 4: Disassembly..9
Table 1: Recommended Tightening Torque....................9
Table 2: Oil Fill Volume and Acceptable Test Loads.......10
Component Parts List...11
Energizer Test Form...12

1st Printing, August 2012. Rev. 0
OVERVIEW

The Logan Bi-Directional Coiled Tubing Energizer is designed to be operated with the matching Logan Bi-Directional Coiled Tubing Jar. The Energizer’s function is to supply acceleration to the weight bar and the upper portion of the Jar during the Jar free stroke.

The Coiled Tubing Energizer is capable of applying up only, down only or up and down acceleration in a straight pull or push operation with splines that are engaged at all times. It can also be dressed to accelerate only up or only down.

The Logan Bi-Directional Coiled Tubing Energizer is essentially a hydraulic fluid spring which stores energy when a push or pull load is applied to the running string. When the energy is released by the free stroke of the Jar, the weight bar and Jar accelerates until a blow of high impact is struck. The short length of the Energizer makes it ideal for coiled tubing operations.

Logan Bi-Directional Coiled Tubing Energizers are hydrostatically pressure balanced and can operate at any depth. They can be dressed with special packing to withstand temperatures above 350°F. They are constructed of stainless steel for added strength and corrosion resistance.

This Energizer is simple to assemble and its unique design allows for easy, dependable operation.

The Energizer effectively accelerates the weight bar and the upper portion of the Jar with any push or pull load up to the maximum recommended load.

Since the Energizer’s independent internal chambers are sealed at both ends, the operating oil cannot escape and well fluids cannot enter the chambers. The operating oil constantly lubricates the internal working parts promoting long wear life of the Energizer.

The comparatively large ID (Inside Diameter) of the Coiled Tubing Energizer permits the use of drop balls for unlatching devices and accessories.

Prior to running any operation using the Coiled Tubing Energizer, it is necessary to configure the appropriate weight between the Coiled Tubing Energizer and Jar to achieve the best impact/impulse. The weight must be between the Jar and Energizer (no weight above the Energizer).

The lubricator must be of sufficient length to contain both the downhole fishing assembly and the fish.

NOTE: If the Energizer and/or weight are not run with the Jar due to a desire to keep the bottomhole assembly short, the effectiveness of the Jar will not be fully utilized.

RIG UP

All internal and external threaded connections are tightened to the recommended torque at the dressing facility prior to shipment.

Drift all the elements of the downhole fishing assembly with any drop balls which will be used.

Tong the Bi-Directional Coiled Tubing Energizer only on tool joint OD (Outside Diameter). Do not tong on the body joints. Doing so will damage the tool.

For the maximum effectiveness of Jar, the Bi-Directional Coiled Tubing Energizer should be installed in the string above the weight bar, which is attached to the top of the Logan Bi-Directional Coiled Tubing Jar.

The Logan Bi-Directional Coiled Tubing Energizer is always used in conjunction with a Logan Bi-Directional Coiled Tubing Jar.

In deviated and horizontal holes, the lack of available stretch in the running string below the kickoff point causes a great loss in the effectiveness of jarring blow. The Bi-Directional Coiled Tubing Energizer provides the means to store the required energy above the Jar and effectively offsets the loss of stretch in the running string. The Logan Bi-Directional Coiled Tubing Energizer also has an important secondary contribution, the hydraulic fluid in the Energizer cushions the shock of the running string, as it rebounds after each jarring stroke. This reduces shock-damage to the tool and running string.

JARRING

The cycle life of the coiled tubing string should be considered when planning the jarring operation.

The Coiled Tubing Energizer is capable of applying up only, down only or up and down acceleration in a straight pull or push operation with splines that are engaged at all times.

RIG DOWN

Remove the tool from the string and inspect for damage and oil leaks.

Prior to storage, the tool should be flushed out. Wash the tool joints and replace thread protectors before racking the tool.

DRESSING AREA MAINTENANCE

Overview

After field service, the Logan Bi-Directional Coiled Tubing Energizer should be disassembled, cleaned, inspected and redressed.

Equipment Required

The following is a list of equipment that will be required to dress the Energizer:

1. A vise or equivalent devise of a suitable size capable of clamping the tool horizontally and vertically.
2. Overhead crane with adequate capacity.
3. Non-marking friction tongs for outside diameters of body parts.
4. Lift straps suitable for lifting heavy parts during assembly and disassembly.
5. An inclined Coiled Tubing Jar Tester.
6. Packing set for the size tool being dressed.
7. T-Bar wrench, extensions, and sockets for the size tool being dressed.
8. Upper Pressure Body ID Setting Tool for the size tool being dressed.
9. Floater Removal Tool (to remove the Nut from the Upper Pressure Body) for the size tool being dressed.
10. Polypak Stretcher and Install Tool for the size tool being dressed.
11. 100 ml and 1000 ml graduated cylinder.
12. Filtering funnel with extension.
14. Combination wrenches of suitable sizes for the Mandrel Extension.
15. Energizer Oil – Mobile DTE 24 ISO 32 Hydrocarbon Oil or equivalent.
16. Disassembly Sub for the size tool being dressed.
17. Clean sheet or rolled paper.

DISASSEMBLY

NOTE: Correct placement of the vise and tong is required when breaking connections to prevent damage to the tool. For correct placement see Figure 1: Tong and Vise Locations on page 6.

WARNING: The Energizer could contain residual well pressure. Care should be taken when unscrewing connections to avoid bodily harm.

1. In a vise, break all external joints supporting the end of the Energizer to prevent bending. DO NOT fully

CAUTION: Do not clamp or tong over the thread area at any time to prevent galling of the connection.

2. Place the Energizer horizontally in a vise, gripping on the Upper Pressure Body. Remove the Top Sub.
3. Liberally apply stainless steel anti-seize grease to pin thread and 20° shoulder of Disassembly Sub. Install Disassembly Sub hand-tight with extension and socket. See Figure 4: Disassembly on page 9.

WARNING: The Energizer could contain residual well pressure. Care should be taken when unscrewing connections to avoid bodily harm.

4. Flip the assembly around and clamp on the Upper Pressure Body. Place an oil catch pan under the Upper and Lower Pressure Body connection. Slowly unscrew the Lower Pressure Body from Upper Pressure Body until any trapped pressure escapes or oil seeps thru the threads.

Do not completely unscrew the Lower Pressure Body.

WARNING: The Mandrel could rapidly stroke shut against the Spline Body when the residual pressure is released. Keep clear of this area.

5. Screw in the Lower Pressure Body about two (2) or three (3) turns.
6. Flip the assembly around and clamp on the Mandrel, supporting the extended end. On the Top Sub end, using the T-bar wrench, slowly loosen the Nut. Once pressure has been released, remove Disassembly Sub and lay it aside. Allow oil to drain.

WARNING: When the Nut disengages, the T-bar wrench could jump outward. Stand clear of the T-bar wrench.

7. Remove Upper Pressure Body. Using the Floater Removal Tool, remove the Nut from the bore of the Upper Pressure Body. Lay the parts aside.
8. With two (2) appropriately sized combination wrenches installed at 180° on the hex or flats of the Mandrel Extension, loosen and remove it. Lay the part aside.
9. Remove the Lower Pressure Body and lay the part aside.
10. Separate the Spline Body, Mandrel and Splines. Lay the parts aside.

The disassembly is now complete.

INSPECTION OF PARTS

Non-Extrusion Rings are normally reused and should not be removed unless they are damaged.

Inspect all seals as they are removed for unusual wear patterns. Noting seal wear can help pinpoint other areas of wear that could cause premature seal failure.

All parts should be cleaned prior to inspection. High-pressure wash all parts with soap and hot water inside and out. Rinse the soap off with hot or cold water, spraying from both ends. Blow dry (with air) the ID, OD, and threads. Place the dry, clean parts on a clean sheet of paper.

NOTE: Seals are to be replaced at re-dress when the tool is at a repair facility.

CAUTION: Magnetic particle inspection is strongly recommended for locating fatigue cracks that could lead to failure downhole. Parts with cracks must be replaced.

Inspect all parts for signs of damage on seal surfaces, splines, bores, bearing faces at each connection, and impact surfaces. Inspect all outside body parts for OD wear.
INSPECTION OF CRITICAL PARTS

Mandrel Extension
Examine the bump OD sealing surface of the Mandrel Extension for galling or pitting. If severe damage is noted, the part will have to be replaced or reworked by returning it to the manufacturing facility for repair.

Splines
Damaged Splines should be replaced.

Mandrel and Spline Body
Inspect spline grooves for damage.
Buff spline grooves to remove damage.

WARNING: Care should be taken when using power tools. Always wear protective eyewear and gloves to prevent metal particles from injuring the eyes and hands.

ASSEMBLY

Preparation
All parts must be cleaned after Mag- netic Particle Inspection. High-pressure wash all parts with soap and hot water inside and out. Rinse the soap off with hot or cold water, spraying from both ends. Blow dry (with air) the ID, OD, and threads. Place the dry, clean parts on a clean sheet of paper.

Prior to assembly, install all seals in their proper location by observing their location and direction as shown in Figure 3: Energizer Seal Components, on page 8. Some seals have special non-extrusion devices and care should be taken to assure their proper orientation.

CAUTION: Only lint free cloths should be used while handling the tool.

Assembling the Energizer

1. Place the Lower Pressure Body vertically in a vise with the stencil groove towards the top.
2. Apply stainless steel anti-seize grease on the entire box OD, ID, and internal shoulder of the Mandrel, at the small end.
3. Ensure that the Splines do not have any sharp corners. Separate the Spline body into two halves.

CAUTION: Ensure the Spline Body is a matched set. Parts are stenciled with set numbers.

Place the Splines into the spline grooves of the Spline Body and freely apply stainless steel anti-seize grease on the entire ID of both halves. Place one half on a bench. Orient the Mandrel and Spline Body as shown in Figure 2: Energizer Components on page 7. Lay the Mandrel on the Spline Body half where the spline grooves of Mandrel line up with the Splines. Place the other half on the Mandrel aligning the Spline Body halves and press together. Grease the entire Spline Body Pin end, including threads and shoulder. Screw the Spline Body with Mandrel into the Lower Pressure Body hand-tight.

4. Move tool into pipe vise clamping onto the Spline Body with the split horizontal. Tighten Lower Pressure Body to Spline Body to specified torque. See Table 1: Recommended Tightening Torque, on page 9.
5. Loosen vise and move tool so vise is gripped onto tool joint OD of Mandrel. Ensure that it is possible to stroke the Lower Pressure Body and Spline Body by hand. (It may at first be difficult to stroke, but it should get easier after a few strokes.) If the tool will not stroke, disassemble the Spline Body and Mandrel from the Lower Pressure Body. Clean, inspect the sliding surfaces, remove any galls or burrs, and reassemble the parts. Retest the sliding of the Mandrel.
6. Open the Mandrel completely. Put the tool vertically into the bench vise with the Mandrel end down.
7. Wipe the Mandrel Extension with a lint free cloth to ensure it is clean. Insert the Mandrel Extension with the wrench flats or hex end at the top into the tool. Push down and rotate until it shoulders against the Mandrel. If unable to rotate by hand, use the combination wrench on the wrench flats or hex and rotate until seated.
8. Move the tool into the pipe vise, gripping the tool joint OD of the Mandrel. With two combination wrenches, at 180° apart on wrench flats or hex, tighten to the specified torque. See Table 1: Recommended Tightening Torque on page 9.
9. Move tool to bench vise and lightly clamp vertically around the Lower Pressure Body, not near the box threads, with Mandrel facing down in fully-open position.
10. In the open position, fill the lower (push) chamber with appropriate amount of Energizer oil. See Filling the Energizer with Oil on page 5.
11. Apply stainless steel anti-seize grease on entire pin end and shoulder of the Upper Pressure Body. Also apply stainless steel anti-seize grease to the ID seal area to just past the seal. Install the Upper Pressure Body, hand-tight.
12. Apply stainless steel anti-seize grease to the entire pin end and shoulder of the Top Sub. Install the Top Sub.
13. Push test the Energizer. (See Testing the Energizer on page 5.)
14. When push test is acceptable, leave the tool in the near fully closed position. Place the tool in vise vertically with Top Sub end up. Remove the Top Sub.
15. Fill the upper (pull) chamber with appropriate amount of Energizer oil. See Filling the Energizer with Oil on page 5.
16. Coat the ID threads, internal shoulder and OD Optiseal on the Nut with stainless steel anti-seize grease. Do not grease over the rubber seals. Coat the rubber seals with Energizer oil. Install the Nut into the Upper Pressure Body with the hex end up. Using the Nut Installation tool (T-Bar wrench, extension and socket) press down while turning in order to force the Nut into the seal bore of the Upper Pressure Body. Tighten (do not torque) until the Nut shoulders on the Mandrel Extension.

17. If needed, touch up Top Sub with stainless steel anti-seize grease and install into the Upper Pressure Body.

18. Pull test the Energizer. (See Testing the Energizer on page 5.)

19. After acceptable pull test, place the Energizer horizontally into the vise clamping onto the Mandrel Tool Joint OD. Remove Top Sub and tighten Nut to the specified torque. See Table 1: Recommended Tightening Torque on page 9.

20. If needed, touch up the Top Sub with stainless steel anti-seize grease and install into the Upper Pressure Body.

21. Reposition the tool in the vise and clamp onto the Spline Body with the split horizontal.

NOTE: Correct placement of the vise and tong is required when making up connections to prevent damage to the tool. For correct placement see Figure 1: Tong and Vise Locations on page 6.

22. Torque exterior joints with Non-marking friction tongs to the specified torque. See Table 1: Recommended Tightening Torque, on page 9.

FILLING THE ENERGIZER WITH OIL

1. Pour needed amount of oil into the graduated cylinder. See Table 2: Oil Fill Volume and Acceptable Test Loads on page 10.

2. Place a filtered funnel extension inside the tool between outside of Mandrel Extension and inside of Body. Pour oil from the graduated cylinder into the tool thru the filtered funnel.

CAUTION: Care should be taken, not to allow the oil to overflow from the funnel. Overflow will cause the amount of oil to be incorrect and the tool will have to be disassembled, washed and reassembled.

TESTING THE ENERGIZER

NOTE: Prior to testing the Energizer, make sure you have all the necessary technical data, test loads, and test sheets required to complete tests. The Logan Coiled Tubing Jar Tester is at a 15° incline.

Push Test

1. Install the proper Jar Tester Subs onto the Energizer and lift it into the Logan Coiled Tubing Jar Tester using an appropriate hoist.

2. Set push pressure on tester to the minimum. Start to push the Energizer closed and slowly increase pressure until tool is within 1/32” of being fully open as measured between Spline Body and Mandrel. Hold load for approximately five (5) minutes. Verify that the tool is not fully open. Check for leaks and record push load. If there is a leak or the tool is fully open, disassemble and redress. If push load is within the test load range, the push test is complete. See Table 2: Oil Fill Volume and Acceptable Test Loads on page 10. If push load was not reached, remove Top Sub and Nut and add or remove oil as needed. Reassemble and retest.

CAUTION: Do not push more than the maximum test load shown in the notes on Table 2: Oil Fill Volume and Acceptable Test Loads on page 10.

Pull Test

1. Install the proper Jar Tester Subs onto the Energizer and lift it into the Logan Coiled Tubing Jar Tester using an appropriate hoist.

2. Set pull pressure on the tester to the minimum. Start to pull Energizer open and slowly increase pressure until tool is within 1/32” of being fully open as measured between Spline Body and Mandrel. Hold load for approximately five (5) minutes. Verify the gap still exists, check for leaks and record pull load. If there is a leak or no gap, disassemble and redress. If pull load is within the test load range, pull test is complete. See Table 2: Oil Fill Volume and Acceptable Test Loads on page 10. If pull load was not reached, remove Top Sub and Nut and add or remove oil as needed. Reassemble and retest.

CAUTION: Do not pull more than the maximum test load shown in Table 2: Oil Fill Volume and Acceptable Test Loads on page 10.
Figure 1:
Energizer Tong and Vise Locations for Applying Make-up and Break-out Torque
Logan Oil Tools reserves the right to change or discontinue designs without notice.

Figure 2: Energizer Components
Figure 3: Energizer Seal Components

- Top Sub Seal: 1 required
- Nut OptiSeal: 1 required
- Nut Seal Non-Extrusion Ring: 2 required
- Nut Seal Protector Ring: 2 required
- Nut Seal: 1 required
- Nut ID Seal Protector Ring: 1 required
- Nut ID Seal: 1 required
- Upper Pressure Body ID Non-Extrusion Ring: 2 required
- Upper Pressure Body ID Seal Protector Ring: 2 required
- Upper Pressure Body ID Seal: 1 required
- Pressure Body Seal Non-Extrusion Ring: 1 required
- Pressure Body Seal Protector Ring: 1 required
- Pressure Body Seal: 1 required
- Mandrel ID Seal: 1 required
- Mandrel OD Seal: 1 required
- Mandrel Seal Protector Ring: 1 required
- Mandrel Non-Extrusion Ring: 1 required
- Mandrel Polypak: 1 required
- Pressure Body Seal Protector Ring: 1 required
- Pressure Body Seal: 1 required
- Mandrel ID Seal: 1 required
- Mandrel OD Seal: 1 required
- Mandrel Seal Protector Ring: 1 required
- Mandrel Non-Extrusion Ring: 1 required
- Mandrel Polypak: 1 required
Table 1: Recommended Tightening Torque

<table>
<thead>
<tr>
<th>Tool OD size (in)</th>
<th>Outer Body Torque (ft-lb)</th>
<th>Mandrel Extension Torque (ft-lb)</th>
<th>Nut Torque (ft-lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-11/16</td>
<td>250</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>2-1/8</td>
<td>750</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>2-7/8</td>
<td>1,500</td>
<td>150</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 4
Disassembly
Table 2: Oil Fill Volume & Acceptable Test Loads

<table>
<thead>
<tr>
<th>1-1/16" OD Energizer</th>
<th>Pull Chamber Initial Fill Volume (ml)</th>
<th>Pull Load to Open Tool in Jar Tester (lb)</th>
<th>Push Chamber Initial Fill Volume (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool Downhole Temperature (°F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>113</td>
<td>9,970</td>
<td>79</td>
</tr>
<tr>
<td>200</td>
<td>110</td>
<td>5,770</td>
<td>79</td>
</tr>
<tr>
<td>300</td>
<td>107</td>
<td>3,070</td>
<td>79</td>
</tr>
<tr>
<td>400</td>
<td>106</td>
<td>1,700</td>
<td>79</td>
</tr>
<tr>
<td>500</td>
<td>105</td>
<td>1,140</td>
<td>79</td>
</tr>
<tr>
<td>600</td>
<td>104</td>
<td>900</td>
<td>79</td>
</tr>
</tbody>
</table>

Notes:
1. Chart is based on oil fill temperature of 60° to 90° F.
2. Adjust Pull Chamber fill volume to obtain loads shown in chart.
3. Pull load to open tolerance is -1,000 lb +1,500 lb
4. Adjust Push Chamber fill volume to obtain 1,500 lb -1,000 lb +2,000 lb to close the tool in Jar Tester.

<table>
<thead>
<tr>
<th>2-1/8" OD Energizer</th>
<th>Pull Chamber Initial Fill Volume (ml)</th>
<th>Pull Load to Open Tool in Jar Tester (lb)</th>
<th>Push Chamber Initial Fill Volume (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool Downhole Temperature (°F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>461</td>
<td>22,000</td>
<td>166</td>
</tr>
<tr>
<td>150</td>
<td>454</td>
<td>16,500</td>
<td>166</td>
</tr>
<tr>
<td>200</td>
<td>446</td>
<td>11,000</td>
<td>166</td>
</tr>
<tr>
<td>250</td>
<td>441</td>
<td>7,550</td>
<td>166</td>
</tr>
<tr>
<td>300</td>
<td>436</td>
<td>4,100</td>
<td>166</td>
</tr>
<tr>
<td>350</td>
<td>433</td>
<td>2,350</td>
<td>166</td>
</tr>
<tr>
<td>400</td>
<td>429</td>
<td>600</td>
<td>166</td>
</tr>
<tr>
<td>500</td>
<td>426</td>
<td>0</td>
<td>166</td>
</tr>
<tr>
<td>600</td>
<td>424</td>
<td>0</td>
<td>166</td>
</tr>
</tbody>
</table>

Notes:
1. Chart is based on oil fill temperature of 60° to 90° F.
2. Adjust Pull Chamber fill volume to obtain loads shown in chart.
3. Pull load to open tolerance is -2,000 lb +2,000 lb
4. Adjust Push Chamber fill volume to obtain 2,500 lb -1,000 lb +2,500 lb to close the tool in Jar Tester.

<table>
<thead>
<tr>
<th>2-7/8" OD Energizer</th>
<th>Pull Chamber Initial Fill Volume (ml)</th>
<th>Pull Load to Open Tool in Jar Tester (lb)</th>
<th>Push Chamber Initial Fill Volume (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool Downhole Temperature (°F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>699</td>
<td>33,300</td>
<td>287</td>
</tr>
<tr>
<td>150</td>
<td>689</td>
<td>25,700</td>
<td>287</td>
</tr>
<tr>
<td>200</td>
<td>678</td>
<td>18,100</td>
<td>287</td>
</tr>
<tr>
<td>250</td>
<td>671</td>
<td>13,350</td>
<td>287</td>
</tr>
<tr>
<td>300</td>
<td>664</td>
<td>8,600</td>
<td>287</td>
</tr>
<tr>
<td>350</td>
<td>660</td>
<td>6,150</td>
<td>287</td>
</tr>
<tr>
<td>400</td>
<td>655</td>
<td>3,700</td>
<td>287</td>
</tr>
<tr>
<td>450</td>
<td>653</td>
<td>2,700</td>
<td>287</td>
</tr>
<tr>
<td>500</td>
<td>651</td>
<td>1,700</td>
<td>287</td>
</tr>
<tr>
<td>600</td>
<td>648</td>
<td>900</td>
<td>287</td>
</tr>
</tbody>
</table>

Notes:
1. Chart is based on oil fill temperature of 60° to 90° F.
2. Adjust Pull Chamber fill volume to obtain loads shown in chart.
3. Pull load to open tolerance is -2,500 lb +3,000 lb
4. Adjust Push Chamber fill volume to obtain 3,500 lb -1,000 lb +3,500 lb to close the tool in Jar Tester.
| OUTSIDE DIAMETER - INCHES | 1-11/16 (1.708) | 2-1/8 (2.150) | 2-7/8 (2.906) |
| INSIDE DIAMETER - INCHES | 17/32 (.530) | 21/32 (.656) | 29/32 (.906) |
| CONNECTION SIZE (BOX UP) | 1" AMMT | 1-1/2 AMMT | 2-3/8 PAC |
| CONNECTION SIZE (PIN DOWN)| 1" AMMT | 1-1/2 AMMT | 2-3/8 PAC |

COMPLETE ASSEMBLY Logan Part No.

<table>
<thead>
<tr>
<th>Outside Diameter</th>
<th>Inside Diameter</th>
<th>Connection Size (Box Up)</th>
<th>Connection Size (Pin Down)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-11/16 (1.708)</td>
<td>17/32 (.530)</td>
<td>1" AMMT</td>
<td>1" AMMT</td>
</tr>
<tr>
<td>2-1/8 (2.150)</td>
<td>21/32 (.656)</td>
<td>1-1/2 AMMT</td>
<td>1-1/2 AMMT</td>
</tr>
<tr>
<td>2-7/8 (2.906)</td>
<td>29/32 (.906)</td>
<td>2-3/8 PAC</td>
<td>2-3/8 PAC</td>
</tr>
</tbody>
</table>

COMPONENT PARTS

<table>
<thead>
<tr>
<th>Component</th>
<th>Part No.</th>
<th>Part No.</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP SUB</td>
<td>CC1000</td>
<td>CC1002</td>
<td>CC1004</td>
</tr>
<tr>
<td>TOP SUB SEAL</td>
<td>LG58122</td>
<td>LG58128</td>
<td>LG58226</td>
</tr>
<tr>
<td>UPPER PRESSURE BODY</td>
<td>CD2000</td>
<td>CD2002</td>
<td>CD2004</td>
</tr>
<tr>
<td>UPPER PRESSURE BODY OD NON-EXTRUSION RING</td>
<td>CC14000</td>
<td>CC14002</td>
<td>CC14004</td>
</tr>
<tr>
<td>UPPER PRESSURE BODY OD SEAL PROTECTOR RING</td>
<td>LG58025</td>
<td>LG58128</td>
<td>LG58226</td>
</tr>
<tr>
<td>UPPER PRESSURE BODY ID NON-EXTRUSION RING</td>
<td>LG58120</td>
<td>LG58216</td>
<td>LG58224</td>
</tr>
<tr>
<td>UPPER PRESSURE BODY ID SEAL PROTECTOR RING</td>
<td>LG58120</td>
<td>LG58216</td>
<td>LG58224</td>
</tr>
<tr>
<td>UPPER PRESSURE BODY ID SEAL</td>
<td>CD4000</td>
<td>CD4002</td>
<td>CD4004</td>
</tr>
<tr>
<td>LOWER PRESSURE BODY</td>
<td>CD3000</td>
<td>CD3002</td>
<td>CD3004</td>
</tr>
<tr>
<td>SPLINE BODY</td>
<td>CD5000</td>
<td>CD5002</td>
<td>CD5004</td>
</tr>
<tr>
<td>MANDREL</td>
<td>CD6000</td>
<td>CD6002</td>
<td>CD6004</td>
</tr>
<tr>
<td>MANDREL ID SEAL</td>
<td>LG58118</td>
<td>LG58120</td>
<td>LG58220</td>
</tr>
<tr>
<td>MANDREL OD NON-EXTRUSION RING</td>
<td>LG58118</td>
<td>LG58120</td>
<td>LG58220</td>
</tr>
<tr>
<td>MANDREL OD SEAL PROTECTOR RING</td>
<td>LG58118</td>
<td>LG58120</td>
<td>LG58220</td>
</tr>
<tr>
<td>NUT ID SEAL PROTECTOR RING</td>
<td>LG58118</td>
<td>LG58120</td>
<td>LG58220</td>
</tr>
<tr>
<td>NUT OD NON-EXTRUSION RING</td>
<td>CC15000</td>
<td>CC15002</td>
<td>CC15004</td>
</tr>
<tr>
<td>NUT OD SEAL PROTECTOR RING</td>
<td>LG58118</td>
<td>LG58120</td>
<td>LG58220</td>
</tr>
<tr>
<td>NUT OD SEAL</td>
<td>LG58118</td>
<td>LG58120</td>
<td>LG58220</td>
</tr>
<tr>
<td>NUT OD POLYPAK</td>
<td>BD209-11</td>
<td>BD209-13</td>
<td>BD209-12</td>
</tr>
<tr>
<td>MANDREL EXTENSION</td>
<td>CD7000</td>
<td>CD7002</td>
<td>CD7004</td>
</tr>
<tr>
<td>NUT</td>
<td>CD8000</td>
<td>CD8002</td>
<td>CD8004</td>
</tr>
<tr>
<td>NUT ID SEAL PROTECTOR RING</td>
<td>LG58118</td>
<td>LG58120</td>
<td>LG58220</td>
</tr>
<tr>
<td>NUT OD NON-EXTRUSION RING</td>
<td>CC15000</td>
<td>CC15002</td>
<td>CC15004</td>
</tr>
<tr>
<td>NUT OD SEAL PROTECTOR RING</td>
<td>LG58118</td>
<td>LG58120</td>
<td>LG58220</td>
</tr>
<tr>
<td>NUT OD SEAL</td>
<td>LG58118</td>
<td>LG58120</td>
<td>LG58220</td>
</tr>
<tr>
<td>SPLINE</td>
<td>CC12000</td>
<td>CC12002</td>
<td>CC12004</td>
</tr>
<tr>
<td>SPLINE OPTISEAL</td>
<td>CC12000</td>
<td>CC12002</td>
<td>CC12004</td>
</tr>
</tbody>
</table>

REDRESS KITS

<table>
<thead>
<tr>
<th>REDRESS KIT</th>
<th>Logan Part No.</th>
<th>Logan Part No.</th>
<th>Logan Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CD10000</td>
<td>CD1002</td>
<td>CD1004</td>
</tr>
</tbody>
</table>

CONSISTS OF:

<table>
<thead>
<tr>
<th>Component</th>
<th>Part No.</th>
<th>Part No.</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPER PRESSURE BODY OD NON-EXTRUSION RING</td>
<td>CC14000</td>
<td>CC14002</td>
<td>CC14004</td>
</tr>
<tr>
<td>NUT & MANDREL OD NON-EXTRUSION RING</td>
<td>LG58118</td>
<td>LG58120</td>
<td>LG58220</td>
</tr>
<tr>
<td>UPPER PRESSURE BODY ID NON-EXTRUSION RING</td>
<td>LG58118</td>
<td>LG58120</td>
<td>LG58220</td>
</tr>
<tr>
<td>SEAL KIT</td>
<td>LG58010</td>
<td>LG58012</td>
<td>LG58014</td>
</tr>
<tr>
<td>SPLINE</td>
<td>CC12000</td>
<td>CC12002</td>
<td>CC12004</td>
</tr>
</tbody>
</table>

REQUIRED ACCESSORIES

<table>
<thead>
<tr>
<th>Component</th>
<th>Part No.</th>
<th>Part No.</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMBINATION WRENCH SIZE FOR MANDREL EXTENSION - INCHES</td>
<td>13/16</td>
<td>1</td>
<td>1-3/8</td>
</tr>
<tr>
<td>SIX-POINT SOCKET SIZE FOR NUT - INCHES</td>
<td>7/8</td>
<td>1-1/8</td>
<td>1-1/2</td>
</tr>
<tr>
<td>FLOATER REMOVAL TOOL*</td>
<td>LG58118</td>
<td>LG58120</td>
<td>LG58220</td>
</tr>
<tr>
<td>POLYPAK STRETCHER</td>
<td>CD11000</td>
<td>CD11002</td>
<td>CD11004</td>
</tr>
<tr>
<td>POLYPAK INSTALLATION TOOL</td>
<td>CD12000</td>
<td>CD12002</td>
<td>CD12004</td>
</tr>
<tr>
<td>UPPER PRESSURE BODY SETTING TOOL</td>
<td>CD13000</td>
<td>CD13002</td>
<td>CD13004</td>
</tr>
<tr>
<td>SAFETY SUB</td>
<td>CD15000</td>
<td>CD15002</td>
<td>CD15004</td>
</tr>
</tbody>
</table>

* Used for removing Nut from Upper Pressure Body
Logan Bi-Directional Coiled Tubing Energizer Test Form

Date of Test ________________________________

Person Who Dressed/Tested Tool ________________________________

Energizer Assembly Number __________________ Serial Number __________________

Tool OD __________________ Connection __________________

Type of Oil Put Into Tool __________________

Volume of Oil Put Into Down (Push) Section (ml) __________________

Volume of Oil Put Into Top (Pull) Section (ml) __________________

Fully Open Stroke Length of Tool (inches) __________________

<table>
<thead>
<tr>
<th>Pull Load (lbs) (Up Test)</th>
<th>Push Load (lbs) (Down Test)</th>
<th>Amount of Tool Open at Down Test Load (inches)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dirty Tool Test Data

Date of Test ________________________________

Person Who Dressed/Tested Tool ________________________________

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
U.S. SALES OFFICES

▲ California
3155 Pegasus Drive
Bakersfield, CA 93308-6800
661.387.1449 I Fax 661.387.1624

▲ Louisiana
103 Bluffwood Drive
Broussard, LA 70518-3310
337.839.2331 I Fax 337.839.2334
118 Common Court
Houma, LA 70360-7982
985.868.7333 I Fax 985.868.7007

▲ North Dakota
4925 Highway 85 South
Williston, ND 58801
701.572.0565 I Fax 701.572.0644

▲ Oklahoma
424 South Eagle Lane
Oklahoma City, OK 73128-4225
405.782.0625 I Fax 405.782.0760

▲ Pennsylvania
244 Grey Fox Drive, Suite 1
Montoursville, PA 17754-9572
570.546.1066 I Fax 570.546.0388

▲ Texas
1519 South Flournoy
Alice, TX 78332
361.396.0139 I Fax 361.396.0112
11610 Cuten Road
Houston, TX 77066-3008
832.602.2134 I Fax 832.286.4117
11006 Lucerne Street
Houston, Texas 77016-1920
281.219.6613 I Fax 281.219.6638
1305 Energy Drive
Kilgore, TX 75662-5539
903.984.6700 I Fax 903.984.6755
601 McDonald
Odessa, TX 79761-6106
432.580.7414 I Fax 432.580.7656

▲ Utah
1369 South 1100 East
Vernal, UT 84088-8600
435.781.2856 I Fax 435.781.2858

INTERNATIONAL STOCKING DISTRIBUTORS

▲ Canada
Logan Oil Tools
9755 45th Avenue NW
Edmonton, Alberta T6E 5V8
780.433.9957 I Fax 780.468.1979

▲ Colombia
Logan Oil Tools Sucursal Colombia
Calle 113 No. 7-21
Edificio Teleport Business Park
Torre A, Oficina 915
Bogota, Colombia
(57.1).629.1995 I Fax (57.1).612.8357

▲ Singapore
Logan Oil Tools Pte Ltd
54 Loyang Way
Singapore 508747
65.65428422 I Fax 65.65420477

▲ United Arab Emirates
Logan Oil Tools
Jebel Ali Free Zone (South)
P.O. Box 23724
Dubai, UAE
971.4.813.8000 I Fax 971.4.813.8001

▲ Woodhouse International
P.O. Box 23724
Dubai, UAE
971.4.347.2300 I Fax 971.4.347.4642

▲ United Kingdom
Logan Oil Tools, U.K. Ltd.
Unit C1 Kintore Business Park
Kintore, Inverurie
Aberdeenshire AB51 OYQ
Scotland
+44.1467.631190

©2014 Logan Oil Tools
12/2014